Published on

Markdown Notation

Authors
  • avatar
    Name
    Kevin Navarrete-Parra
    Twitter

The following table is a recreation of Table 1.2 found in A Mathematics Course for Political & Social Research by Will H. Moore and David A. Siegel, with a few additions and changes1. This table is a quick reference for mathematical notation in Markdown and RMarkdown, and it can also be useful for formatting math equations in LaTeX. Additionally, it is worth noting that any of these inline code snippets can also be expressed as code blocks in markdown and Rmarkdown by wrapping them in double dollar signs, e.g., $$a + b$$.

SymbolMeaningInline Code
a+ba + bAddition$a + b$
aba - bSubtraction$a - b$
a×ba \times b aba \ast b aba \cdot bMultiplication$a \times b$ $a \ast b$ $a \cdot b$
a/ba / b a÷ba \div b ab\frac{a}{b}Division$a / b$ $a \div b$ $\frac{a}{b}$
5mod2=15\mod 2=1Modulo$5\mod 2 = 1$
±a\pm aPlus or Minus$\pm a$
ana^nExponent$a^n$
an\sqrt[n]{a}Radical$\sqrt[n]{a}$
3!=3×2×13!=3 \times 2 \times 1Factorial$3!=3 \times 2 \times 1$
Δx\Delta xChange in x$\Delta x$
π\piPi$\pi$
eeEuler's constant$e$
\infty -\inftyInfinity$\infty$ $-\infty$
i=klxi\displaystyle\sum_{i = k}^l x_iSum of xix_i from index i=ki = k to i=li = l$\displaystyle\sum_{i = k}^l x_i$
i=klxi\displaystyle\prod_{i = k}^l x_iProduct of xix_i from index i=ki = k to i=li = l$\displaystyle\prod_{i = k}^l x_i$
......Continued progression$...$
ddx\frac{d}{dx}Total derivative with respect to x$\frac{d}{dx}$
x\frac{\partial}{\partial x}Partial derivative with respect to x$\frac{\partial}{\partial x}$
dx\int dxIntegral over x$\int dx$
aba \bigcup bSet union$a \bigcup b
aba \bigcap bSet intersection$a \bigcap b$
a×ba \times bCartesian product of sets$a \times b$
\setminusSet difference$\setminus$
AcA^{c}Complement of set A$A^{c}$
A=A = \emptysetA is an empty (or null) set$A = \emptyset$
xAx \in ASet membership$x \in A$
xAx \notin ANot a member of a set$x \notin A$
\mid \ni ::Such that$\mid$ $\ni$ $:$
aba \subset bProper subset$a \subset b$
aba \subseteq bSubset$a \subseteq b$
<< and >>Less than and greater than$< $ and $ > $
\leq and \geqLess than or equal to and greater than or equal to$\leq$ and $\geq$
\approxApproximately equal to$\approx$
\equivEquivalent to$\equiv$
\neqNot equal to$\neq$
\forallFor all$\forall$
\existsThere exists$\exists$
\RightarrowImplies$\Rightarrow$
\LeftrightarrowIf and only if$\Leftrightarrow$
\becauseBecause$\because$
\thereforeTherefore$\therefore$
¬\negNegation$\neg$
f(x)f(x)Function$f(x)$
a,b{a, b}Delimiter for a discrete set${a, b}$
[a,b][a, b]Closed interval$[a, b]$
(a,b)(a, b)Open interval$(a, b)$

Footnotes

  1. I've added some additional symbols and changed the formatting slightly for my purposes.